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Abstract. We discuss the bond-bending model in three dimensions. We argue that for this 
model loops are very important in all length scales and the rigidity percolation is non-local, 
exhibiting similar behaviour to the central force model. 

Recently, randomly diluted elastic networks have received much attention. Two rota- 
tional invariant models, the central force model [ 11 (CF model), and the bond-bending 
model [2] (BB model), i.e. the CF model plus an angular force term between nearest- 
neighbouring bonds, have been studied. The computer simulation of the CF model by 
Feng and Sen [l], Lemieux et a1 [3], Day et a1 [4] indicate that the geometrical 
(percolation) exponents are different from that of the random resistor network (RRN) 
(e.g. vcen = 1.05 compared to Y = 1.34 for percolation) and the bulk modulus exponent 
fCF = 1.4 is different from the conductivity exponent t = 1.30. This suggests that the 
CF model belongs to a different universality class than that of RRN. Here if either the 
dynamical exponents or geometrical (percolation) exponents of the two systems are 
different, we consider them to belong to a different universality class. The simulation 
by Roux and Hansen [5], however, gives f&/YCF=3.0 which is about the same as 
fBB/Y,  where fBB is the bulk modulus exponent for the BB model. This makes the CF 

model more interesting and controversial. The study of the BB model in two dimensions, 
on the other hand, is much more satisfactory. All the numerical results [6-81 agree 
with each other and indicate that the bulk modulus exponent fBB is much larger than 
the conductivity exponent t. Hence people believe that the BB model belongs to a 
different universality class than that of the RRN, in the sense that they have different 
dynamical exponents. 

The Hamiltonian of the BB model in two dimensions can be written as 

where u b  = U,, - U,, is the displacement associated with a bond b (connecting points s1 
and sz), Rb is a unit vector along the direction of bond b, &b is an indicator variable: 
&b = 1 if bond b is occupied and &b = 0 otherwise, and (bb') indicates a sum over pairs 
of nearest-neighbouring bonds. Here kcF and k g B  are spring constants. 

The most accurate numerical value of bulk modulus exponent fBB of the BB model 
in two dimensions by Zabolitzky et a1 [8] gives fBB = 3.96 f 0.04. This leads people [6, 
9-11] to conjecture that the relation 

0305-4470/89/070291+05$02.50 @ 1989 IOP Publishing Ltd L29 1 



L292 Letter to the Editor 

for the BB model is exact, where t = 1.30 is the conductivity exponent, v =$ is the 
correlation length exponent for percolation. 

In three dimensions, the experimental estimate of fBB gives fBB = 3.8 [ 121 and 
fBB=3.9*0.2 [13] which agree very well with equation (2) if one uses t =  1.9 and 
v = 0.85 in three dimensions. Most recently, Arbabi and Sahimi [ 141 have carried out 
a computer simulation using equation ( 1 )  in three dimensions. They found that 
fBB=3.78 which also agrees with equation (2). It raises questions as how to define a 
BB model in three dimensions and whether equation (2) is true for the BB model, etc. 
The main purpose of this letter is to address those questions. 

Two expressions for the BB models have appeared in the literature, one being 
equation ( 1 ) .  The other is the so-called Keating model [15] (which has been used by 
He and Thorpe [16]): 

where the prime means excluding the bending of 180" bonds. 

A and B (figure 1) is i k B B ( b 8 A B ) 2 ,  where A8AB satisfies the equation 
In fact, these two models are related. The bond-bending energy of a pair of bonds 

(fi12+U121 I i 1 3 + u l 3 1  C ~ S ( ~ + A ~ A B ) =  ( f f12+1(12)  ' ( i13+U13)  (4) 
A A  

and cos 8 = R I 2 .  R13. For small displacement U,  we can expand equation (4) to get 
A A  A A (k12 * ~ 1 2 + R 1 3  * u13)R12 * R13-sin 8 A6AB = R12 * U I 3 +  RI3 * u12. ( 5 )  

From equation (5) we see that equation (3) is good only when (i) I?,, - i 1 3  = 0 and 
(ii) there is no stretch on the bonds A and B. Note that 

A A  

where R = R12x R13. Here we have assumed that (RI is non-zero. From equations (5) 
and (6), we arrive at 

(7) 
A R  

A e A B  = (U13 i13 - u12 R12) ' - 
IRI 

Thus in two dimensions, we have 

Equation (8) is a very clean expression for the BB model and it can also include 
the bending of 180" bonds. This expression also enables us [17] to map it to a RRN 

when the CF term is irrelevant. However, equation (8) is not rotationally invariant in 
three dimensions. For example, we can rotate the cluster in figure 1 around bond A. 
From equation ( l ) ,  we see that it costs energy. One can also convince oneself by 
calculating the number of zero frequency modes No of the clusters in figures 1 and 2, 
for which we found No = 4 and 3 respectively. Hence for the cluster in figure 2, one 
has only three translational degrees of freedom and no rotational degrees of freedom. 
Thus the result of Arbabi and Sahimi [14] cannot be used as a check for equation (2). 

In order to keep the Hamiltonian rotationally invariant, which is a physical require- 
ment, we may write the Hamiltonian of the BB model in three dimensions as 
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Figure 1. The number of zero frequency modes of 
this cluster is 4 in three dimensions for equation (1). 

Figure 2. A non-rigid cluster in three dimensions for 
the BB model. 

where 

This is an appropriate Hamiltonian to discuss the elastic property of the three- 
dimensional BB model, e.g. the elastic property of a three-dimensional covalent network 
1181. 

For the Hamiltonian defined in equation (9) the cluster in figure 2 is not rigid, 
because one can twist bonds A and C freely. As a result the rigidity threshold prigid 

should be higher than the percolation threshold p c .  A constraint counting method 
[19], which works surprisingly well in estimating prigid of the CF model [20], by Phillips 
and Thorpe predicts prigid - 0.4 for the cubic lattice for the three-dimensional BB model. 
This should be compared with p c  - 0.25. One should notice that the rigidity percolation 
of the three-dimensional BB model is very similar to that of the CF model. From 
equation (lo), a chain having 180" bonds (a  straight line) is rigid. Thus we can always 
renormalise a straight line to a single bond. Due to the fact that the cluster in figure 
2 is non-rigid, a renormalised linear chain having more than two bonds is non-rigid. 
In other words, any cluster containing a singly connected bond (which is not a dangling 
bond; see figure 3)  is non-rigid. As a consequence, a rigid cluster must at least be a 
biconnected cluster. In figure 4, we give an example of a biconnected cluster that is 
non-rigid, since plaquettes A and B can move freely without changing the angles. In 
order to make the cluster rigid, we need more loops in all length scales which is 

Figure 3. A non-rigid cluster with a singly connected 
bond B, where A is a dangling bond. 

Figure 4. A non-rigid biconnected cluster, where 
plaquettes A and B are not rigid connected. 
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reminiscent of the CF model [4]. Given a cluster one cannot tell whether it is rigid or 
not without looking at the whole cluster. We believe that non-locality of the rigidity 
percolation of the three-dimensional BB model is sufficient to change the universality 
class and expect that it belongs to a different universality class from that of ordinary 
percolation. 

In order to make prigid of the BB model coincide with p c ,  one needs to consider a 
diamond lattice with third-nearest-neighbour interaction. (Note that one needs 
infinitely long-range interaction to bring prigid down to p c  for a cubic lattice.) Actually, 
in the study of biophysics, the Hamiltonian which contains a CF term, BB term, torsion 
(third-nearest-neighbour interaction for the peptide plane) has been widely used (e.g. 
[21]) in molecular dynamics simulations, where the double helix is basically of diamond 
structure. This Hamiltonian would be the model to test equation (2) in three dimensions. 
Another possible model to look at would be the disc model proposed by Feng [22]. 
The advantages of working on this model are twofold. Firstly, it can be treated 
theoretically [23] because it contains only two-body interaction, unlike the BB model. 
Note that since the superelastic bulk modulus exponent S is found to be different for 
the disc model [22] ( S =  1.02) and the BB model [24] ( S =  1.30)t, it is worthwhile to 
study the disc model in more detail. Secondly, the BB model can be obtained by 
integrating out the angular part 8 from the disc model, i.e. 

where the integration is straightforward. Here one should extend the range of 8 to 
infinity and let p = y in the disk model (see [22] for details of the disc model). 
Hopefully, equation (12) would help us to set up a field theory for the BB model. 

One should also notice that a lattice-of-beams model [26] can also be formulated. 
In this model, each site is defined as a rigid solid with d ( d  + 1)/2 degrees of freedom 
in a d-dimensional space, and the energy is the most general quadratic form, built 
with the displacements of the two ends of each bond, that satisfies the rotational 
invariance requirements. 

In summary, we have pointed out that equation ( 1 )  is not rotationally invariant in 
three dimensions and the lack of rotational invariance of equation (1) invalidates the 
simulation result of Arbabi and Sahimi [14]. We have discussed the generalisation of 
equation (1) in three dimensions. We also argued that for the three-dimensional BB 

model, loops are very important in all length scales and the rigidity percolation is 
non-local, as observed for the CF model. Hence, we expect that the rigidity percolation 
of the three-dimensional BB model belongs to a different universality class from that 
of the ordinary percolation. 

I thank the NIH for support under grant 4-60357. I also thank the NSF for partial 
support under grant DMR 85-19059 of the MRL program. 
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